1.
Speed: Aggregating (Summarizing) the data for
performance: During cube processing SSAS will pre-calculate and physically
stores aggregations of facts (Amounts, Quantities, Money). These aggregations, for example Turnover by
Year and Region, are used when a business user queries the cube for this type
of information. Therefore the query
response time can be very short. When
the query is fired SSAS does not have to calculate the outcome from the
underlying details (like T-SQL has to do), but can take the values directly
from the stored aggregations. Besides
that SSAS stores query-results in a cache.
So the next time the same type of query is fired, it will try to get it
from the cache. Speed is especially
important for a dashboard that an executive is using to slice-and-dice as any
mouse click that takes more than a few milliseconds to return data will draw
complaints
2.
Multidimensional analysis – slice, dice,
drilldown: This very much depends on the tool or front end that is layered over
the data, but the idea is that you can very quickly navigate around the data,
finding trends, spotting patterns, ‘drilling down’, ‘slicing and dicing’ – all
key to the concept of cubes. Allowing
the user to intuitively ‘wander’ around the data, not even realising that they
performing analysis
3.
Multiple data intergration. On a cube you can
easily use multiple data sources and do minimal work with many automated tasks
(especially when you use SSIS) to intergrate them on a single analysis system.
4.
Can store Hierarchies
5.
Built-in advanced time-calculations – i.e.
12-month rolling average: It’s very easy to implement advanced time
calculations like 12-month rolling average, year-to-date and references to
parallel periods in previous years. This
is typically the stuff decision-makers in the organisation want to have. Imagine how many T-SQL queries are required
for calculating rolling averages for each of the previous 12 months
(2009-May..2010 April) => 12. Using
the cube as a datasource => Only 1
6.
Easily use Excel to view data via Pivot Tables
7.
Security: You can use the security setting to
give end-users access to only those parts (slices) of the cube relevant to them
8.
Automatically handles Slowly Changing Dimensions
(SCD)
9.
Built-in support for KPI’s
10.
Ability to automatically link and display the
records that make up an aggregation (“Show Details”)
11.
Support for drillthrough actions such as
generating an SSRS report or linking to a URL based on the value selected
12.
Can use Analysis Services Data Mining
More info:
What
are the advantages of using BI Cubes over a regular Warehouse?Beginner questions: Benefits of using an AS cube, over just database & SSRS?
Why Use SSAS?
Why Analysis Services?
Back to basics: Why do you need OLAP cubes?
No comments:
Post a Comment